Mathematics

Unit Further Pure 1

Friday 18 January 20131.30 pm to 3.00 pm

For this paper you must have:

- the blue AQA booklet of formulae and statistical tables.

You may use a graphics calculator.

Time allowed

- 1 hour 30 minutes

Instructions

- Use black ink or black ball-point pen. Pencil should only be used for drawing.
- Fill in the boxes at the top of this page.
- Answer all questions.
- Write the question part reference (eg (a), (b)(i) etc) in the left-hand margin.
- You must answer each question in the space provided for that question. If you require extra space, use an AQA supplementary answer book; do not use the space provided for a different question.
- Do not write outside the box around each page.
- Show all necessary working; otherwise marks for method may be lost.
- Do all rough work in this book. Cross through any work that you do not want to be marked.

Information

- The marks for questions are shown in brackets.
- The maximum mark for this paper is 75 .

Advice

- Unless stated otherwise, you may quote formulae, without proof, from the booklet.
- You do not necessarily need to use all the space provided.

$$
\frac{\mathrm{d} y}{\mathrm{~d} x}=\frac{x}{1+x^{3}}
$$

Starting at the point (1,3), use a step-by-step method with a step length of 0.1 to estimate the value of y at $x=1.2$. Give your answer to four decimal places.
(5 marks)

2 (a) Solve the equation $w^{2}+6 w+34=0$, giving your answers in the form $p+q$ i, where p and q are integers.
(b) It is given that $z=\mathrm{i}(1+\mathrm{i})(2+\mathrm{i})$.
(i) Express z in the form $a+b \mathrm{i}$, where a and b are integers.
(ii) Find integers m and n such that $z+m z^{*}=n \mathrm{i}$.

3 (a) Find the general solution of the equation

$$
\sin \left(2 x+\frac{\pi}{4}\right)=\frac{\sqrt{3}}{2}
$$

giving your answer in terms of π.
(b) Use your general solution to find the exact value of the greatest solution of this equation which is less than 6π.

4 Show that the improper integral $\int_{25}^{\infty} \frac{1}{x \sqrt{x}} \mathrm{~d} x$ has a finite value and find that value.

5 The roots of the quadratic equation

$$
x^{2}+2 x-5=0
$$

are α and β.
(a) Write down the value of $\alpha+\beta$ and the value of $\alpha \beta$.
(b) Calculate the value of $\alpha^{2}+\beta^{2}$.
(c) Find a quadratic equation which has roots $\alpha^{3} \beta+1$ and $\alpha \beta^{3}+1$.

6 (a) The matrix \mathbf{X} is defined by $\left[\begin{array}{ll}1 & 2 \\ 3 & 0\end{array}\right]$.
(i) Given that $\mathbf{X}^{2}=\left[\begin{array}{cc}m & 2 \\ 3 & 6\end{array}\right]$, find the value of m.
(ii) Show that $\mathbf{X}^{3}-7 \mathbf{X}=n \mathbf{I}$, where n is an integer and \mathbf{I} is the 2×2 identity matrix.
(b) It is given that $\mathbf{A}=\left[\begin{array}{rr}1 & 0 \\ 0 & -1\end{array}\right]$.
(i) Describe the geometrical transformation represented by \mathbf{A}.
(ii) The matrix \mathbf{B} represents an anticlockwise rotation through 45° about the origin.

Show that $\mathbf{B}=k\left[\begin{array}{rr}1 & -1 \\ 1 & 1\end{array}\right]$, where k is a surd.
(iii) Find the image of the point $P(-1,2)$ under an anticlockwise rotation through 45° about the origin, followed by the transformation represented by \mathbf{A}.
(4 marks)
$7 \quad$ The variables y and x are related by an equation of the form

$$
y=a x^{n}
$$

where a and n are constants.
Let $Y=\log _{10} y$ and $X=\log _{10} x$.
(a) Show that there is a linear relationship between Y and X.
(b) The graph of Y against X is shown in the diagram.

Find the value of n and the value of a.

8 (a) Show that

$$
\sum_{r=1}^{n} 2 r\left(2 r^{2}-3 r-1\right)=n(n+p)(n+q)^{2}
$$

where p and q are integers to be found.
(b) Hence find the value of

$$
\sum_{r=11}^{20} 2 r\left(2 r^{2}-3 r-1\right)
$$

(2 marks)

9
An ellipse is shown below.

The ellipse intersects the x-axis at the points A and B. The equation of the ellipse is

$$
\frac{(x-4)^{2}}{4}+y^{2}=1
$$

(a) Find the x-coordinates of A and B.
(b) The line $y=m x(m>0)$ is a tangent to the ellipse, with point of contact P.
(i) Show that the x-coordinate of P satisfies the equation

$$
\left(1+4 m^{2}\right) x^{2}-8 x+12=0
$$

(ii) Hence find the exact value of m.
(iii) Find the coordinates of P.

